DYNAMIC MODELING FUEL PROCESSORS

PROJECT GOALS

- Develop detailed dynamic models of fuel processor (FEMLAB) and fuel cell components (Simulink) for aeronautical applications
- Integrate models into a common framework for dynamic simulation and analysis using Simulink
- Evaluate and refine approach for reusability, rapid development and assessment of complete system, and design improvement from simulation results

BACKGROUND

- Fuel cell based power systems are becoming increasingly important in aeronautical applications
- Reformer based fuel cell systems make the technology amenable to logistic fuels such as diesel, JP5 and JP8
- A fundamental analysis of the dynamic system response is a critical factor in the overall design process.
- Detailed dynamic models of the fuel reformer fuel cell system will become a key tool for carrying out design analyses.

Dynamic Simulation Approach

Modular Approach:

Individual simulation modules for each fuel cell type

- **Tubular SOFC**
- Planar SOFC
- **MCFC**
- PFM

Reformer module Gas turbine module (compressor and turbine sub-modules) Catalytic oxidizer Combustor module Heat exchanger module Humidifier module Condenser module Pumps, valves, regulators, plumbing, and other balance of plant (BOP) **Standardized Framework For Dynamic Modeling & Controls**

- Collaboration between Control group (Prof. F. Jabbari) and Dynamic Simulation (Prof. S. • Samuelsen, J. Brouwer, ...)
- MATLAB and SimulinkTM Framework Chosen
- User friendly package by MathWorks (Matlab)
- Flexibility
 - o Prepackaged modules

 - Object orientedEasy to learn and use
 - o Hardware extensible
 - Transferable to other software 0
- Natural for adding controls development and power electronics

Previous Module Development Reformer, SOFC, MCFC, PEM, Gas Turbine

General Model Assumptions

- 1D process flow
- Well-stirred within nodal volume
- Slow pressure transients

Fuel Cell Assumptions

- H2 electrochemically oxidized only
- CO consumed via water-gas shift
- Shift always at equilibrium (constraint)
- Equipotential: $V_{cell} = V_{node 1} = V_{node n}$

Dynamic Model Basic Equations

Equation of State

$$C = \frac{P}{R_u T}$$

Mass Conservation Equations

$$V \frac{dC_j}{dt} = \dot{N}_{in,j} - \dot{N}_j + r_j$$
$$VC \frac{d\mathbf{X}}{dt} = \dot{N}_{in} (\mathbf{X}_{in} - \mathbf{X}) - \mathbf{X} \sum r_j + \mathbf{R}$$

Calculates changes in mole fraction based on inlet molar flows and reaction rates

Dynamic Model Basic Equations

Energy Conservation

Gaseous

Molar Flow Through Electrolyte (Fuel Cell Only)

$$\frac{d}{dt}(CC_{v,molar}T) = (\dot{N}h)_n - \dot{N}h + (\dot{N}h)_{olid \to gas}$$

+ (heat transfer)+ (heat of reaction)

Solid

Molar Flow Through Electrolyte (Fuel Cell Only)

 $\frac{d}{dt}(\rho C_{mass}T) = (\dot{N}h)_{gas1 \to solid} - (\dot{N}h)_{solid \to gas2}$

+ (heat transfer)+ (heat of reaction)

Heat Transfer

Conduction

- Axially from node to node through solids
- Between nodal materials (bipolar plates, electrodes, ...)

Convection

- Between surfaces and gases
- Based on Nusselt number

Radiation

- From surface to surface
- Geometry is an issue
 - o Concentric cylinders: TSOFC
 - o Parallel planes: PSOF
- Other: combustor, reformer

Planar Nodal SOFC Heat Transfer Resistances

Solid Oxide Fuel Cell Electrochemistry

Cell Reactions

$$H_{2} + O^{2-} \xrightarrow{anode} H_{2}O + 2e^{-}$$

$$I_{2}O_{2} + 2e^{-} \xrightarrow{cathode} O^{2-}$$

Nerst Potential

$$E = E_0 + \frac{R_u T}{2F} \ln \left(\frac{\chi_{H_2} \chi_{O_2}^{\gamma_2}}{\chi_{H_2O}} P_{CATHODE}^{\gamma_2} \right)$$

• Ideal operating voltage with respect to partial pressures of cell reactants

Steam Reformation – Occurs in Reformer and Fuel Cells

Methane reformation reaction

$$CH_4 + H_2O \xrightarrow{\text{reform}} 3H_2 + CO$$

• Reaction rates on nickel based catalysts: Lee et al. (1990) and Ross et al. (1972)

$$r_{CH_4} = -kP_{CH_4}^m P_{H_2O}^n$$

From Stoichiometry...

$$r_{CO} = -r_{CH_4}$$

 $r_{H_2} = -3r_{CH_4}$
 $r_{H_2O} = r_{CH_4}$

Water Gas Shift - Occurs in Reformers and in Fuel Cells

Shift reaction

$$CO + H_2O \xleftarrow{\text{shift}} CO_2 + H_2$$

- · Reaction proceeds fast enough at elevated temperatures to assume equilibrium
- Algebraic constraint at exit of each node

Provides the non-electrochemical reaction source for CO₂!

$$K(T) = \frac{\chi_{CO_2} \chi_{H_2}}{\chi_{CO} \chi_{H_2O}}$$

Fuel Cell Operation

Actual operating voltage

$$V = E - \eta_A - \eta_C - \eta_R$$

· Polarization losses are due to kinetics, mass transport and electrical resistances

$$\eta_A = \frac{R_u T}{\alpha n F} \ln \left(\frac{i_{node}}{i_0} \right)$$
$$\eta_C = -\frac{R_u T}{n F} \ln \left(1 - \frac{i}{i_L} \right)$$

$$\eta_R = iR$$

PSOFC DISCRETIZATION

- 10 Discrete Computational Nodes
- Anode Gas
- Cathode Gas
- Cell Solid
- Bi-Polar Plate
- •

Sample TSOFC Outputs: 10% Load Increase

PROGRESS & CURRENT STATUS Jet Fuel Equilibrium Results

- Various Jet Fuel thermodynamic data acquired
- Commercial Aviation Fuel, Jet-A
 - o C11H21
 - o MW: 153 g/mol
 - o Heat of formation (DHfo): -249 kJ/mol
- Traditional Air Force Military Aviation Fuel, JP-4
 - o C10H19.4
 - o MW: 139 g/mol
 - o Heat of formation (DHfo): -227 kJ/mol
- Traditional Navy Military Aviation Fuel, JP-5
 - o C10H19.2
 - o MW: 139 g/mol
 - o Heat of formation (DHfo): -222 kJ/mol
- Standard Military Aviation Fuel, JP-8
 - o C12H23
 - o MW: 167 g/mol
 - o Heat of formation (DHfo): -319 kJ/mol

ATR S/C ratio dependence (O/C = 0.5, T = 1000 K)

Effects of O/C

Jet Fuel Equilibrium Results – Partial Oxidation

New Module Development

Reaction Mechanism Need and Approaches

- Use Equilibrium results in look-up tables with discretized dynamic model for heat transfer, • mass and momentum conservation
- Use Chemical Kinetics from a simpler hydrocarbon set •
- Obtain data and/or develop simple chemical kinetic mechanism for JP-5

Must incorporate dynamic equations

- Heat transfer (conduction, convection, radiation) •
- Mass (or species) conservation •
- Momentum conservation •
- **Energy conservation** •

•Main module development need is for the overall geometry of the NuElement Module

- **Dynamic JP-5 Reformer Module**
- Concentric Cylinders
 - Combustor 0
 - o Catalyst Bed
 - Preheat 0
 - o Anode off-gas recycle (option)
- **Reformation Kinetics**
- $CH_4 + H_2O = CO + 3H_2$
- CH₄ + 2H₂O = CO₂ + 4H₂
- $CH_4 + 2O_2 = CO_2 + 2H_2O_2$
 - **Reformer Geometry (5 nodes)**

$$\Delta H_{298K}^{0} = 206 \, kJ \,/ \, mol$$
 (1)

$$\Delta H_{298K}^{0} = 165 \, kJ \,/ \, mol$$
 (2)

$$\Delta H_{298K}^{0} = -803 \, kJ \,/ \, mol$$
 (3)

$$CH_4 + H_2O \Leftrightarrow CO + 3H_2$$
 (1)

- $CO + H_2O \Leftrightarrow CO_2 + H_2$ (2)
- $CH_4 + 2H_2O \Leftrightarrow CO_2 + 4H_2$ (3)
- $CH_4 + 2O_2 \Leftrightarrow CO_2 + 2H_2O$ (4)
 - $CH_4 + H_2O \Leftrightarrow CO + 3H_2$ (5)
 - $CH_4 + CO_2 \Leftrightarrow 2CO + 2H_2$ (6)

• Arrhenius Rate Expressions

$r_1 = k_1 \left(\frac{F}{r_1} \right)$	$\frac{P_{CH_4}P_{H_2O}}{P_{H_2}^{2.5}}$	$\frac{P_{\rm CO}P_{\rm H_2}^{0.5}}{K_{\rm pl}}\right)$	/DEN ²
$\mathbf{r}_2 = \mathbf{k}_2 \begin{pmatrix} 1 \\ - \\ - \end{pmatrix}$	P _{CO} P _{H2} O P _{H2} -	$\left(\frac{P_{CO_2}}{K_{P^2}}\right)/D$	EN ²
$r_3 = k_3 \left(-\frac{1}{2}\right)$	$\frac{P_{CH_4}P_{H_20}^2}{P_{H_2}^{3.5}}$	$\frac{P_{CO_2}P_{H_2}^{0.5}}{K_{p3}}$)/DEN ²
$r_4 = k_4 P$	CH4Po2		
$r_5 = k_5 \left($	P _{CH4} P _{H20}	$-\frac{P_{CC}P_{H_2}^3}{K_{p5}}$)
$r_6 = k_6 \left($	P _{CH4} P _{CO2}	$-\frac{P_{CC}^2 P_{H_2}^2}{K_{p6}}$)

Reaction
i
 Activation
energy E_i
(kJ/mol)
 Pre-exponential factor
A_i

 1
 240.1

$$1.336 \times 10^{15}$$

(kmol*MPa^{0.5}),kg_{cat}*h)

 2
 67.13
 1.955×10^7
(kmol*kg_{cat}*h*MPa)

 3
 243.9
 3.22×1014
(kmol*MPa^{0.5}),kg_{cat}*h)

 4
 166
 1.10
(mol/g_{cat}*s*Pa²)

 5
 29
 4.19×10^9
(mol/g_{cat}*s*Pa²)

 6
 23.7
 2.42×10^9
(mol/g_{cat}*s*Pa²)

 $k_i = A_i \exp\left(-\frac{E_i}{RT}\right)$

 $DEN = 1 + K_{CO}P_{CO} + K_{H_2}P_{H_2} + K_{CH_4}P_{CH_4} + K_{H_2O}P_{H_2O} / P_{H_2}$

Reaction Equilibrium Constants

Equilibium constant
$$K_{pi}$$
Dimensions $K_{p1} = 1.198 \times 10^{11} \exp(-26830/T)$ $(MPa)^2$ $K_{p2} = 1.77 \times 10^{-2} \exp(4400/T)$ $(MPa)^0$ $K_{p3} = K_{p1} \cdot K_{p2}$ $((MPa)^2$ $K_{p5} = K_{p1}$ $(MPa)^2$ $K_{p6} = 6.780 \times 10^{12} \exp(-31230/T)$ $(MPa)^2$

$$K_j = A_j \exp\left(-\frac{\Delta H_j}{RT}\right)$$

Reformer Dynamic Simulation Results – S/C 1.0 + 1.5

Reformer Dynamic Simulation Results – S/C 1.0 + 1.5

Reformer Dynamic Simulation Results – 0/C 0.25 ▶ 0.5

Reformer Dynamic Simulation Results – 0/C 0.25 ▶ 0.5

Reformer Dynamic Simulation Results – Catalyst "light off"

CONCLUSIONS

- Simulink interface critical to the development of system-wide dynamic models.
- Modular approach compatible with several implementation techniques for component models, including user-written programs (FORTRAN / C) as well as commercial simulation software.

PERSONNEL

Investigators: J. Brouwer, and G.S. Samuelsen **Students:** Li Yuan, Fabian Mueller, Anh-Tuan Do

SPONSORS Nu Element, Inc.